FOAM is an open protocol for proof of location on Ethereum. Our mission is to build a consensus driven map of the world, empowering a fully decentralized web3 economy with verifiable location data. FOAM incentivizes the infrastructure needed for privacy-preserving and fraud-proof location verification. The starting point for FOAM is static proof of location, where a community of Cartographers curate geographic Points of Interest on the FOAM map. Through global community-driven efforts, FOAM’s dynamic proof of location protocol will enable a permissionless and privacy-preserving network of radio beacons that is independent from external centralized sources and capable of providing secure location verification services. FOAM Token Functionality 1. Add and Curate Geographic Points of Interest The FOAM Spatial Index Visualizer allows Cartographers to participate in interactive TCR POIs on a map. Users can add points to the map, validate new candidates and verify the map by visiting real world locations. The FOAM Token Curated Registry unlocks mapping in a secure and permissionless fashion and allows locations to be ranked and maintained by token balances. Users can deposit FOAM Tokens into POIs on the map to increase attention those POIs might receive. 2. Signal for Zone Incentivisation A further potential use of the FOAM Token by Cartographers is to stake their FOAM Tokens to Signal. Signaling is a mechanism designed to allow Cartographers to incentivize the expansion and geographic coverage of the FOAM network. To Signal, a Cartographer stakes FOAM Tokens to a Signaling smart contract by reference to a particular area. These staked tokens serve as indicators of demand, and are proportionate to (i) the length of time staking (the earlier, the better), and (ii) the number of tokens staked (the less well-served areas, the better). In the context of the contingent Dynamic Proof of Location concept (described further in the Product Whitepaper), these indicators are the weighted references that determine the spatial mining rewards. 3. Contribute to Potential Secure Location Services as Zone Anchor or Verifier The FOAM protocol may allow users to provide work and secure localization services and location verification for smart contracts and be rewarded for their own efforts with new FOAM Tokens in the form of mining rewards. Devices and real world contracts can be programmed to designate attestations and track interactions and transactions on the map. With the addition of necessary radio hardware by individual users and the grass roots expansion of the FOAM network, it may be possible for location status to be proved in a different manner. Location could be proved through a time synchronization protocol that would ensure continuity of a distributed clock, whereby specialized hardware could synchronize nodes’ clocks over radio to provide location services in a given area. As explained further in the following paragraph, this ‘Dynamic Proof of Location’ is contingent on a number of factors outside of Foamspace’s control.
Golem is a decentralized supercomputer that is accessible by anyone. The system is made up of the combined power of user’s machines from personal PCs to entire datacenters. Golem is able to compute almost any tasks from CGI rendering through machine learning to scientific learning. It utilizes an ethereum-based transaction system to clear payments between providers, requestors and software developers however it is safe because all computations take place in sandbox environments and are fully isolated from the hosts’ systems. The company released Brass in 2016 which includes Blender and LuxRender which are the two tools for CGI rendering. There are three releases that follows which are Clay, Stone and Iron. Golem has recently updated their Brass Beta and the highlight of this upgrade are the streamlined task creation GUI, the support for partial task restart in case of subtask timeouts and the fix that should alleviate the issues with the Docker service on Windows. Other than that, improvements have been made on the Blender verification and transaction tracking subsystems and fixed some minor pain-points in the UX. Transaction history will become more user-friendly with separate tabs for payments and incomes. Apart from that, improvements are made for requestors as well, requestors is now able to add resource file without having to repeat the task creation procedure if they have forgotten to add them beforehand. Grand vision and core features ● Golem is the first truly decentralized supercomputer, creating a global market for computing power. Combined with flexible tools to aid developers in securely distributing and monetizing their software, Golem altogether changes the way compute tasks are organized and executed. By powering decentralized microservices and asynchronous task execution, Golem is set to become a key building block for future Internet service providers and software development. And, by substantially lowering the price of computations, complex applications such as CGI rendering, scientific calculation, and machine learning become more accessible to everyone. ● Golem connects computers in a peer-to-peer network, enabling both application owners and individual users ('requestors') to rent resources of other users’ ('providers') machines. These resources can be used to complete tasks requiring any amount of computation time and capacity. Today, such resources are supplied by centralized cloud providers which, are constrained by closed networks, proprietary payment systems, and hard-coded provisioning operations. Also core to Golem’s built-in feature set is a dedicated Ethereum-based transaction system, which enables direct payments between requestors, providers, and software developers. ● The function of Golem as the backbone of a decentralized market for computing power can be considered both Infrastructure-as-a-Service (IaaS), as well as Platform-as-a-Service (PaaS). However, Golem reveals its true potential by adding dedicated software integrations to the equation. Any interested party is free to create and deploy software to the Golem network by publishing it to the Application Registry. Together with the Transaction Framework, developers can also extend and customize the payment mechanism resulting in unique mechanisms for monetizing software. Check out CoinBureau for the full review of Golem.