æternity is a public, open-source blockchain protocol that enables a platform for next-generation decentralized applications with high scalability. Its core components are written in the functional programming language Erlang and its smart contract language - Sophia - is also functional. æternity has a stellar team of developers including Robert Virding - co-creator of Erlang, John Hughes - co-designer of Haskell, and Ulf Norell - co-designer of the Agda programming language for formal verification. Unlike other blockchain platforms, the æternity protocol itself incorporates a number of essential technological features. State channels for off-chain scaling, oracles for real-world information, and a naming system for increased user-friendliness are all implemented on Layer 1. æternity also features SDKs in Javascript, GO, Phyton, Java, as well as a middleware and a development suite that streamline smart contract development. æternity incorporates the Bitcoin-NG consensus algorithm developed by academics from Cornell University and uses the Cuckoo Cycle mining algorithm for Sybil attack protection. AE tokens, the native cryptocurrency of the æternity platform, is used for both - an economic unit of account and as ballots in the community-driven on-chain governance votes.
Nano, a low-latency cryptocurrency built on an innovative block-lattice data structure offering unlimited scalability and no transaction fees. Nano by design is a simple protocol with the sole purpose of being a high-performance cryptocurrency. The Nano protocol can run on low-power hardware, allowing it to be a practical, decentralized cryptocurrency for everyday use. The original Nano (RailBlocks) paper and first beta implementation were published in December, 2014, making it one of the first Directed Acyclic Graph (DAG) based cryptocurrencies [6]. Soon after, other DAG cryptocurrencies began to develop, most notably DagCoin/Byteball and IOTA. These DAG-based cryptocurrencies broke the blockchain mold, improving system performance and security. Byteball achieves consensus by relying on a “main-chain” comprised of honest, reputable and user-trusted “witnesses”, while IOTA achieves consensus via the cumulative PoW of stacked transactions. Nano achieves consensus via a balance-weighted vote on conflicting transactions. This consensus system provides quicker, more deterministic transactions while still maintaining a strong, decentralized system. Nano continues this development and has positioned itself as one of the highest performing cryptocurrencies. Nano is a trustless, feeless, low-latency cryptocurrency that utilizes a novel blocklattice structure and delegated Proof of Stake voting. The network requires minimal resources, no high-power mining hardware, and can process high transaction throughput. All of this is achieved by having individual blockchains for each account, eliminating access issues and inefficiencies of a global data-structure. We identified possible attack vectors on the system and presented arguments on how Nano is resistant to these forms of attacks. Check out CoinBureau for the complete review of Nano.