Bitcoin Cash is a hard fork of Bitcoin with a protocol upgrade to fix on-chain capacity. Bitcoin Cash intends to be a Bitcoin without Segregated Witness (SegWit) as soft fork, where upgrades of the protocol are done mainly through hard forks and without changing the original economic rules of the Bitcoin. Bitcoin Cash (BCH) is released on 1st August 2017 as an upgraded version of the original Bitcoin Core software. The main upgrade is the increase in the block size limit from 1MB to 8MB. This effectively allows miners on the BCH chain to process up to 8 times more payments per second in comparison to Bitcoin. This makes for faster, cheaper transactions and a much smoother user experience. Why was Bitcoin Cash Created? The main objective of Bitcoin Cash is to to bring back the essential qualities of money inherent in the original Bitcoin software. Over the years, these qualities were filtered out of Bitcoin Core and progress was stifled by various people, organizations, and companies involved in Bitcoin protocol development. The result is that Bitcoin Core is currently unusable as money due to increasingly high fees per transactions and transfer times taking hours to complete. This is all because of the 1MB limitation of Bitcoin Core’s block size, causing it unable to accommodate to large number of transactions. Essentially Bitcoin Cash is a community-activated upgrade (otherwise known as a hard fork) of Bitcoin that increased the block size to 8MB, solving the scaling issues that plague Bitcoin Core today. Nov 16th 2018: A hashwar resulted in a split between Bitcoin SV and Bitcoin ABC
QuarkChain is a secure, permission-less, scalable, and decentralized blockchain. One of the goals of QuarkChain is to utilize sharding technology to deliver over 1 million transactions per second (tps). Essentially, QuarkChain markets itself as a peer-to-peer blockchain with a high capacity throughput to help deliver fast and secure decentralized applications. The team behind QuarkChain created this blockchain to resolve the issue of scalability that all the major blockchains are currently facing. The team feels that because of the urgency of this issue, the Bitcoin community simply cannot afford to wait until they all agree on a solution. Instead, they feel that by offering different solutions, such as the one inherent in QuarkChain, this compels the community to split via a hard fork and find the solution that works best. QuarkChain encourages increased decentralization through multiple cheap nodes that then create a cluster that works as a super-full node. This prevents the high expenses associated with super-full nodes when the tps gets high. In terms of protection, all transactions within QuarkChain get the protection of 50 percent of the network’s hash power. This makes a double-spending attack incredibly challenging, particularly when combined with QuarkChain’s decentralized nature. QuarkChain relies on a two-layer blockchain structure. Sharding blockchains known as shards are the first layer, while the second layer is a root blockchain that confirms the shards’ blocks.The major work on QuarkChain began in Q2 2017 with research into the problem of blockchain scalability. In Q4 of that year, the team drafted the whitepaper. In February 2018, it released the white paper and completed verification code 0.1. March 2018 saw the 0.1 versions of both the wallet and testnet. Now in Q2, the team is working on the testnet 1.0 and smart contract 0.1. In Q4 2018, the team will have the QuarkChain Core 1.0, along with the mainnet 1.0 and the SmartWallet 1.0. By Q2 2019, both the SmartWallet and QuarkChain Core will be in their 2.0 versions. QuarkChain is a decentralized blockchain network that aims to resolve the issues of scalability that plague existing networks by using sharding technology. In this way, QuarkChain can dramatically extend the usefulness of blockchain technology since many applications are limited by the scalability of existing blockchain networks. The project is still in progress, but QuarkChain has already made many positive steps and already began invite-based beta testing for the testnet, showing significant progress and potential. The main features of Quarkchain are: 1. Reshardable two-layered blockchain: Quarkchain consists of two layers of blockchains. We apply elastic sharding blockchains (shards) as the first layer, and a root blockchain as the second layer that confirms the blocks from the first layer. The second layer that confirms the blocks from the first layer. The second layer is flexible to be resharded as needed without changing the root layer. 2. Guaranteed security by market-driven collaborative mining: To ensure the security of all transactions, a game-theoretic framework is designed for incentives, where at least 50% of overall hash powers are allocated to the root chain to prevent double spending attack on any transactions. 3. Anti-centralized horizontal scalability: In any blockchain network with a high TPS, a super-full node can be extremely expensive, which encourages centralization. In contrast, QuarkChain allows multiple cheap nodes forming a cluster to replace a super-full node. 4. Efficient cross-shard transactions: Cross-shard transactions in QuarkChain can be issued at any time, and confirmed in minutes. The speed of cross-shard transactions increases linearly as the number of shards increases. 5. Simple account management: There is only one account needed for the entire blockchain (shards) in QuarkChain. All cryptocurrencies from different shards are stored in one smart wallet.