Cardstack is an open-source framework and consensus protocol that makes blockchains usable and scalable for the mass market, creating a decentralized software ecosystem that can challenge today’s digital superpowers. Cardstack Token (CARD) is a utility token allowing end- users and businesses to use applications that interact with multiple blockchains, decentralized protocols, app-coin-backed dApps, and cloud- based services while paying a single on-chain transaction fee. The main value proposition of the Cardstack ICO is to breakdown the user experience of disparate software, cloud and blockchain silos which now exist on various levels of the digital world, allowing both developers and users to engage in customizable workflows. To overcome these disparate app silos, Cardstack offers a new UI, deployed via the web or as a peer-to-peer app, which turns each service created by open-source developers into a “card”. Each card comprises a visual embodiment of key information, whereby users can then connect related cards for any type of workflow or utility they desire. These cards are the point of interaction between local services, cloud-based services and blockchain services all on one interface called Cardstack Hub. Underlying the Cardstack ecosystem is the Cardstack Token (CARD), an Ethereum-based ERC20 token. The Cardstack Team comprises many open source contributors. Check out the full list of contributors here. Heading the development of Cardstack is Christopher Tse. Christopher holds a BSc in Computer Science from Columbia University and is the Co-Founder of Monegraph and dotBlockchain Media. He has also served as Senior Director of Innovation at Businessweek. Ed Faulkner is the Lead Developer at Cardstack. He holds a Master of Engineering in Electrical Engineering and Computer Science from MIT. He has founded three of his own tech ventures of which all are currently operational. Hassan Abdel-Rahman is the Lead Blockchain Developer for Cardstack. He holds a BSc in Computer Science and Mathematics from Colorado School of Mines. Previous roles include over 2 years as Senior Software Designer at Monegraph and Principal Engineer at McGraw-Hill Education. One of the most important features Cardstack will deploy is an entry channel payment system that does not require users to purchase cryptocurrency from an exchange. Users can simply pay with fiat, such as a credit card, to purchase CARD tokens directly on the platform, bypassing the need for any prior familiarity with crypto. Once users purchase CARD tokens, they are stored on a native wallet accessible from the Cardstack Hub. CARD tokens held in the native wallet are then used to purchase SSCs for every app and service they users with to access. To make any project appealing to the mass consumer market, this type of simplified entry into the cryptospace is a necessity. Cardstack have made some progress on the development front. The code for over 30 initial modules on the Cardstack platform has been made available via their Github. Also, the Solidity code for the Scalable Payment Pool has already been open-sourced. The Scalability Payment Pool is one of the core back-end mechanisms of the platform that issues rewards to developers for their work. Cardstack aims to create an economically-sustainable software ecosystem that avoids the problems of today’s centralized platforms. It’s an “experience layer” for the decentralized internet of the future, allowing users to combine services across cloud apps and decentralized apps. The ecosystem revolves around the use of Cardstack tokens, or CARD.
Golem is a decentralized supercomputer that is accessible by anyone. The system is made up of the combined power of user’s machines from personal PCs to entire datacenters. Golem is able to compute almost any tasks from CGI rendering through machine learning to scientific learning. It utilizes an ethereum-based transaction system to clear payments between providers, requestors and software developers however it is safe because all computations take place in sandbox environments and are fully isolated from the hosts’ systems. The company released Brass in 2016 which includes Blender and LuxRender which are the two tools for CGI rendering. There are three releases that follows which are Clay, Stone and Iron. Golem has recently updated their Brass Beta and the highlight of this upgrade are the streamlined task creation GUI, the support for partial task restart in case of subtask timeouts and the fix that should alleviate the issues with the Docker service on Windows. Other than that, improvements have been made on the Blender verification and transaction tracking subsystems and fixed some minor pain-points in the UX. Transaction history will become more user-friendly with separate tabs for payments and incomes. Apart from that, improvements are made for requestors as well, requestors is now able to add resource file without having to repeat the task creation procedure if they have forgotten to add them beforehand. Grand vision and core features ● Golem is the first truly decentralized supercomputer, creating a global market for computing power. Combined with flexible tools to aid developers in securely distributing and monetizing their software, Golem altogether changes the way compute tasks are organized and executed. By powering decentralized microservices and asynchronous task execution, Golem is set to become a key building block for future Internet service providers and software development. And, by substantially lowering the price of computations, complex applications such as CGI rendering, scientific calculation, and machine learning become more accessible to everyone. ● Golem connects computers in a peer-to-peer network, enabling both application owners and individual users ('requestors') to rent resources of other users’ ('providers') machines. These resources can be used to complete tasks requiring any amount of computation time and capacity. Today, such resources are supplied by centralized cloud providers which, are constrained by closed networks, proprietary payment systems, and hard-coded provisioning operations. Also core to Golem’s built-in feature set is a dedicated Ethereum-based transaction system, which enables direct payments between requestors, providers, and software developers. ● The function of Golem as the backbone of a decentralized market for computing power can be considered both Infrastructure-as-a-Service (IaaS), as well as Platform-as-a-Service (PaaS). However, Golem reveals its true potential by adding dedicated software integrations to the equation. Any interested party is free to create and deploy software to the Golem network by publishing it to the Application Registry. Together with the Transaction Framework, developers can also extend and customize the payment mechanism resulting in unique mechanisms for monetizing software. Check out CoinBureau for the full review of Golem.