Golem is a decentralized supercomputer that is accessible by anyone. The system is made up of the combined power of user’s machines from personal PCs to entire datacenters. Golem is able to compute almost any tasks from CGI rendering through machine learning to scientific learning. It utilizes an ethereum-based transaction system to clear payments between providers, requestors and software developers however it is safe because all computations take place in sandbox environments and are fully isolated from the hosts’ systems. The company released Brass in 2016 which includes Blender and LuxRender which are the two tools for CGI rendering. There are three releases that follows which are Clay, Stone and Iron. Golem has recently updated their Brass Beta and the highlight of this upgrade are the streamlined task creation GUI, the support for partial task restart in case of subtask timeouts and the fix that should alleviate the issues with the Docker service on Windows. Other than that, improvements have been made on the Blender verification and transaction tracking subsystems and fixed some minor pain-points in the UX. Transaction history will become more user-friendly with separate tabs for payments and incomes. Apart from that, improvements are made for requestors as well, requestors is now able to add resource file without having to repeat the task creation procedure if they have forgotten to add them beforehand. Grand vision and core features ● Golem is the first truly decentralized supercomputer, creating a global market for computing power. Combined with flexible tools to aid developers in securely distributing and monetizing their software, Golem altogether changes the way compute tasks are organized and executed. By powering decentralized microservices and asynchronous task execution, Golem is set to become a key building block for future Internet service providers and software development. And, by substantially lowering the price of computations, complex applications such as CGI rendering, scientific calculation, and machine learning become more accessible to everyone. ● Golem connects computers in a peer-to-peer network, enabling both application owners and individual users ('requestors') to rent resources of other users’ ('providers') machines. These resources can be used to complete tasks requiring any amount of computation time and capacity. Today, such resources are supplied by centralized cloud providers which, are constrained by closed networks, proprietary payment systems, and hard-coded provisioning operations. Also core to Golem’s built-in feature set is a dedicated Ethereum-based transaction system, which enables direct payments between requestors, providers, and software developers. ● The function of Golem as the backbone of a decentralized market for computing power can be considered both Infrastructure-as-a-Service (IaaS), as well as Platform-as-a-Service (PaaS). However, Golem reveals its true potential by adding dedicated software integrations to the equation. Any interested party is free to create and deploy software to the Golem network by publishing it to the Application Registry. Together with the Transaction Framework, developers can also extend and customize the payment mechanism resulting in unique mechanisms for monetizing software. Check out CoinBureau for the full review of Golem.
Quantum Resistant Ledger is a cryptocurrency based on the Python programming language, aimed at combating future attacks by quantum computers. This cryptocurrency is the brainchild of Peter Waterland who realised that Bitcoin, Ethereum, and other such cryptocurrencies have no protection against future technology. It claims to be a “future-proof” cryptocurrency which enables transactions and decentralized communication while providing protection against classical as well as quantum computer attacks. The Quantum Resistant Ledger company was founded by Peter Waterland, who found that Bitcoin, as well as Ethereum signatures are susceptible to attacks by powerful quantum computers. His research on quantum computers and signature programs let to the development of this new cryptocurrency, designed to be resistant to the present classical attacks as well as any future quantum computer attacks. Their team is made up of a diverse range of members spread out across the world, including developers (core, blockchain, mobile developers, etc.), analysts, advisors, marketing managers, designers and more. Quantum Resistant Ledger is the first ever cryptocurrency and the only one in existence as of August 2018, to consider the threat that the future technology of quantum computing poses to cryptocurrencies and their working. It uses a technology specifically designed for post-quantum security, called XMSS, which makes it secure against powerful quantum computers even while using a Proof-of-Stake consensus mechanism. Security against cyber-attacks is a very serious concern in this digital age, especially when you have digital assets whose loss is likely to lead you to bankruptcy. QRL is the first blockchain technology that provides durability and stability through resistance to quantum computer attacks. The encryption methods used by modern blockchains can become vulnerable to quantum computers over the next ten years. QRL tries to create a blockchain with long-term stability. By using blockchain technology, the QRL platform creates a “ledger” that generates hashes in such a way that it is virtually impenetrable to any type of computer attack.