Golem is a decentralized supercomputer that is accessible by anyone. The system is made up of the combined power of user’s machines from personal PCs to entire datacenters. Golem is able to compute almost any tasks from CGI rendering through machine learning to scientific learning. It utilizes an ethereum-based transaction system to clear payments between providers, requestors and software developers however it is safe because all computations take place in sandbox environments and are fully isolated from the hosts’ systems. The company released Brass in 2016 which includes Blender and LuxRender which are the two tools for CGI rendering. There are three releases that follows which are Clay, Stone and Iron. Golem has recently updated their Brass Beta and the highlight of this upgrade are the streamlined task creation GUI, the support for partial task restart in case of subtask timeouts and the fix that should alleviate the issues with the Docker service on Windows. Other than that, improvements have been made on the Blender verification and transaction tracking subsystems and fixed some minor pain-points in the UX. Transaction history will become more user-friendly with separate tabs for payments and incomes. Apart from that, improvements are made for requestors as well, requestors is now able to add resource file without having to repeat the task creation procedure if they have forgotten to add them beforehand. Grand vision and core features ● Golem is the first truly decentralized supercomputer, creating a global market for computing power. Combined with flexible tools to aid developers in securely distributing and monetizing their software, Golem altogether changes the way compute tasks are organized and executed. By powering decentralized microservices and asynchronous task execution, Golem is set to become a key building block for future Internet service providers and software development. And, by substantially lowering the price of computations, complex applications such as CGI rendering, scientific calculation, and machine learning become more accessible to everyone. ● Golem connects computers in a peer-to-peer network, enabling both application owners and individual users ('requestors') to rent resources of other users’ ('providers') machines. These resources can be used to complete tasks requiring any amount of computation time and capacity. Today, such resources are supplied by centralized cloud providers which, are constrained by closed networks, proprietary payment systems, and hard-coded provisioning operations. Also core to Golem’s built-in feature set is a dedicated Ethereum-based transaction system, which enables direct payments between requestors, providers, and software developers. ● The function of Golem as the backbone of a decentralized market for computing power can be considered both Infrastructure-as-a-Service (IaaS), as well as Platform-as-a-Service (PaaS). However, Golem reveals its true potential by adding dedicated software integrations to the equation. Any interested party is free to create and deploy software to the Golem network by publishing it to the Application Registry. Together with the Transaction Framework, developers can also extend and customize the payment mechanism resulting in unique mechanisms for monetizing software. Check out CoinBureau for the full review of Golem.
Zcash is a decentralized and open-source cryptocurrency that offers privacy and selective transparency of transactions. Zcash payments are published on a public blockchain, but the sender, recipient, and amount of a transaction remain private. Zcash is based on peer-reviewed cryptographic research, and built by a security-specialized engineering team on an open source platform based on Bitcoin Core's battle-tested codebase. Our improvement over Bitcoin is the addition of privacy. Zcash uses advanced cryptographic techniques, namely zero-knowledge proofs, to guarantee the validity of transactions without revealing additional information about them. How Zcash works Zcash encrypts the contents of shielded transactions. Since the payment information is encrypted, the protocol uses a novel cryptographic method to verify their validity. Zcash uses a zero-knowledge proof construction called a zk-SNARK, developed by our team of experienced cryptographers based on recent breakthroughs in cryptography. These constructions allow the network to maintain a secure ledger of balances without disclosing the parties or amounts involved. Instead of publicly demonstrating spend-authority and transaction values, the transaction metadata is encrypted and zk-SNARKs are used to prove that nobody is cheating or stealing. Zcash also enables users to send public payments which work similarly to Bitcoin. With the support for both shielded and transparent addresses, users can choose to send Zcash privately or publicly. Zcash payments sent from a shielded address to a transparent address reveal the received balance, while payments from a transparent address to a shielded address protect the receiving value. Check out CoinBureau for guide on What is ZCash.