MOAC stands for the Mother of All Chains. It is a blockchain platform that supports transactions and data access. It is scalable. Sub-chains and smart contracts are compatible with MOAC. Decentralized apps and cross-chain connections are possible as well. MOAC is based on the Ethereum platform, and it uses a ERC20 currency. MOAC offers more including, A layered configuration structure, Asynchronous contract calls, Sharding solutions and Pluggable validation schemes. Transactions are processed through several consensus systems. The rate is 100 times faster than current blockchain platforms. Sub-chains increase concurrency rates up to 10,000 times. Sub-chains reduce cost and create a test environment. Cross-chain connections allow users and dApps to migrate to the MOAC platform without any knowledge. There’s also a decentralized file storage system. MOAC uses a Proof-of-Work system that allows miners to mine the main chain and sub-chains. Mining can be done from mobile devices. PoW algorithms deter third-party interference, including denial of service attacks and spamming. Sharding is another notable feature in MOAC. This is a method for allocating processing power. The amount of processing power given is proportional to the number of nodes in the network. Large blockchain shards are divided into groups of small shards that are fast. MOAC has lofty ambitions: it uses multichain architecture with microchains built on top of the MOAC base layer. It also plans to enable crosschain atomic swaps between blockchains like Bitcoin or Ethereum, just like Komodo does. Both intend to do so via sharding. The MOAC testnet launched November 2017, and the MOAC ERC-20 token and wallet were created in February 2018. Mainnet MOAC launched at the end of April 2018 with Ethereum support, and a mainnet explorer is available on the MOAC.io website. Sharding is due for a December 2018 release. Tokenized MOAC transactions occur on the base layer, and sidechains handle smart contracts. Sidechain creators determine their individual consensus model, so traditional models like Proof-of-Stake or Proof-of-Skill can be used, along with new hybrid models. MOAC aims to be the mother of all cryptocurrencies, and its ambitions are backed by one of the strongest technical teams in blockchain. Based in China, the team has experience in blockchain, enterprise IT, and more. MOAC is a Proof-of-Work algorithm whose token started as an ERC-20 token on the Ethereum network. This base layer supports tokenization using other consensus mechanisms. MOAC decentralizes block processing using microchains and a technique called sharding. Microchains are cross-compatible and can soon be made cross-compatible with other chains for atomic swaps. MOAC has a strong community mostly based in China, where it has a strong presence across social media. This community can build it into a strong dApp, tokenization, and exchange platform.
SingularityNET is a decentralized marketplace for Artificial Intelligence (AI). The business value of AI is becoming clearer each day; however, there’s a significant gap between the people developing AI tools (researchers and academics) and the businesses that want to use them. Most organizations need a more customized solution than what a single AI project can offer, and research projects oftentimes have trouble accessing a large enough data set to build effective machine learning. SingularityNET closes these gaps. The long-term vision of the SingulairtyNET team is to build a network of complex AI Agent interactions primarily using resources from the OpenCog Foundation. To look at this further, let’s check out their in-house built humanoid robot, Sophia. Sophia uses a combination of AI Agents that range from natural language processing to physical motor controls to operate. You tell Sophia to summarize a video that’s embedded in a webpage. To do this, Sophia sends a request to Agent A. Through its AI, Agent A knows that Agent B specializes in analyzing and transcribing video while Agent C specializes in summarizing text. Agent A pays Agent B and Agent C to perform these tasks while Sophia pays Agent A to coordinate. All the while, each Agent has updated their own AI with the network information gained from these tasks and combines it with their previous experiences and knowledge. Therefore, the collective AI of the system grows at a faster rate than any individual Agent. SingularityNET wants to build a decentralized protocol for creators and users of AI to interact with each other, to not only help individual projects benefit by leveraging the strengths of other AI systems that might handle certain tasks better, but ultimately to develop SingularityNET into a functioning AI system itself, with nodes on the network making their own decisions about how to connect services and proactively provide solutions to academic and business problems. Tokenizing the network creates an AI marketplace where AI developers and sellers can not only link with others who might assist in building more robust AI solutions, but also allow AI services and products to be bought and sold, creating revenue and establishing price points where none have existed before. The SingularityNET team boasts 50+ AI developers and 10+ PhDs. Dr. Ben Goertzel leads the group as CEO and Chief Scientist. He’s also the Chairman of the OpenCog Foundation and the Artificial General Intelligence Society, as well as the Chief Scientist at Hanson Robotics, the partner company helping bring SingularityNET to life. Dr. David Hanson, founder of Hanson Robotics, serves as the Robotics Lead. Most famously, Hanson Robotics built Sophia, the most expressive humanoid robot to date. Sophia is also a proud member of the SingularityNET team. The team recently released the alpha version of the platform and is planning on launching a public beta sometime in the middle of 2018.