MOAC stands for the Mother of All Chains. It is a blockchain platform that supports transactions and data access. It is scalable. Sub-chains and smart contracts are compatible with MOAC. Decentralized apps and cross-chain connections are possible as well. MOAC is based on the Ethereum platform, and it uses a ERC20 currency. MOAC offers more including, A layered configuration structure, Asynchronous contract calls, Sharding solutions and Pluggable validation schemes. Transactions are processed through several consensus systems. The rate is 100 times faster than current blockchain platforms. Sub-chains increase concurrency rates up to 10,000 times. Sub-chains reduce cost and create a test environment. Cross-chain connections allow users and dApps to migrate to the MOAC platform without any knowledge. There’s also a decentralized file storage system. MOAC uses a Proof-of-Work system that allows miners to mine the main chain and sub-chains. Mining can be done from mobile devices. PoW algorithms deter third-party interference, including denial of service attacks and spamming. Sharding is another notable feature in MOAC. This is a method for allocating processing power. The amount of processing power given is proportional to the number of nodes in the network. Large blockchain shards are divided into groups of small shards that are fast. MOAC has lofty ambitions: it uses multichain architecture with microchains built on top of the MOAC base layer. It also plans to enable crosschain atomic swaps between blockchains like Bitcoin or Ethereum, just like Komodo does. Both intend to do so via sharding. The MOAC testnet launched November 2017, and the MOAC ERC-20 token and wallet were created in February 2018. Mainnet MOAC launched at the end of April 2018 with Ethereum support, and a mainnet explorer is available on the MOAC.io website. Sharding is due for a December 2018 release. Tokenized MOAC transactions occur on the base layer, and sidechains handle smart contracts. Sidechain creators determine their individual consensus model, so traditional models like Proof-of-Stake or Proof-of-Skill can be used, along with new hybrid models. MOAC aims to be the mother of all cryptocurrencies, and its ambitions are backed by one of the strongest technical teams in blockchain. Based in China, the team has experience in blockchain, enterprise IT, and more. MOAC is a Proof-of-Work algorithm whose token started as an ERC-20 token on the Ethereum network. This base layer supports tokenization using other consensus mechanisms. MOAC decentralizes block processing using microchains and a technique called sharding. Microchains are cross-compatible and can soon be made cross-compatible with other chains for atomic swaps. MOAC has a strong community mostly based in China, where it has a strong presence across social media. This community can build it into a strong dApp, tokenization, and exchange platform.
Ankr strives to build a resource efficient blockchain framework that truly enables Distributed Cloud Computing (DCC) and provides user-friendly infrastucture for business applications. There are indeed existing cloud solutions, but Ankr is the first one to leverage both blockchain and trusted hardware. Technology Overview Ankr provides a computation-resource-efficient blockchain and an integrated data feed system leveraging both cryptographic primitives and trusted hardware Proof of Useful Work The Proof of Useful Work (PoUW) consensus enables a self-sustainable blockchain framework. Instead of wasting electricity and computing power on hashes like Bitcoin does, PoUW uses these resources towards useful work tasks provided by enterprises and consumers. The protocol runs on SGX-enabled CPUs with remote attestation to ensure security and confidentiality. The novel PoUW approach unlocks the massive potential of idle computing power around the world by providing enough incentives: in this scheme, every computation contributor gets compensated, and some will get the extra reward for generating the blocks. In the future, this mining scheme can promote Universal Basic Income (UBI). Plasma Sidechains The Multi-chain Plasma implementation allows different applications to handle application-specific smart contracts on individual side chains, preventing transactions from overloading the PoUW-based main chain. Native Oracle Service Native Oracle Service (NOS) provides authenticated data feed by leveraging both cryptographic primitives and the trusted execution environment (TEE). Through a standardized API to port data from existing websites, NOS enables simple real-world business adoption