nOS is a virtual operating system that introduces a new, decentralized internet. On this new internet user data is safe, and it only goes where the user wants it to go. nOS solves key issues surrounding dApp development, deployment, discovery, and interaction, allowing for true adoption of decentralized applications and blockchain technology. Because applications can choose to make their back-ends fully open-source and transparent, this new implementation of the World Wide Web is defined as the Open Internet. On nOS, applications and websites can be deployed in a completely open and decentralized manner by integrating smart contracts, client-side code, and public-key cryptography. Unlike server-side backend code, smart contracts can be open for all to read, allowing users to review how their data will be transmitted before any final commitments to action. Client-side code and other frontend materials can be distributed via nOS Filesystem, a decentralized file sharing protocol that allows for secure and transparent distribution of static files. By serving both backend logic and frontend material in an open-source, decentralized manner, true transparency between user and application can be achieved. dApps that are deployed to nOS can be accessed through nOS Client, a software solution for desktop and mobile that (among other features) introduces nOS Browser. nOS Browser functions as a web browser, with the added benefit that it integrates with the nOS Protocol, a blockchain-powered web protocol that facilitates secure and open accessibility of nOS dApps. The nOS Protocol resolves domain names that exist on nOS Name Service, a blockchain-powered decentralized implementation of a Domain Name Service, and allows for dApps to register domain names which are discoverable on nOS (e.g. mydapp.neo or my-dapp.eth). The dApp Gateway is a user-friendly dApp discovery platform (or “App Store”) where rankings are decided in a completely decentralized manner via Decentralized Authority. In order to achieve the features such as the ones described above, nOS is powered by the nOS Utility Token. The nOS Utility Token employs various staking and reward utilities which are intended for developers who wish to deploy and maintain dApps on nOS, and for end-users who wish to practice governance by Decentralized Authority. nOS eliminates the need for end-users to manually exchange crypto-currencies in order to make use of various dApps. By integrating crypto-currency exchange APIs, nOS Client automatically converts primary blockchain platform currencies (e.g. NEO/GAS for NEO, ETH for Ethereum) into the required amount of application tokens that are needed to make specific transactions or invocations.
FOAM is an open protocol for proof of location on Ethereum. Our mission is to build a consensus driven map of the world, empowering a fully decentralized web3 economy with verifiable location data. FOAM incentivizes the infrastructure needed for privacy-preserving and fraud-proof location verification. The starting point for FOAM is static proof of location, where a community of Cartographers curate geographic Points of Interest on the FOAM map. Through global community-driven efforts, FOAM’s dynamic proof of location protocol will enable a permissionless and privacy-preserving network of radio beacons that is independent from external centralized sources and capable of providing secure location verification services. FOAM Token Functionality 1. Add and Curate Geographic Points of Interest The FOAM Spatial Index Visualizer allows Cartographers to participate in interactive TCR POIs on a map. Users can add points to the map, validate new candidates and verify the map by visiting real world locations. The FOAM Token Curated Registry unlocks mapping in a secure and permissionless fashion and allows locations to be ranked and maintained by token balances. Users can deposit FOAM Tokens into POIs on the map to increase attention those POIs might receive. 2. Signal for Zone Incentivisation A further potential use of the FOAM Token by Cartographers is to stake their FOAM Tokens to Signal. Signaling is a mechanism designed to allow Cartographers to incentivize the expansion and geographic coverage of the FOAM network. To Signal, a Cartographer stakes FOAM Tokens to a Signaling smart contract by reference to a particular area. These staked tokens serve as indicators of demand, and are proportionate to (i) the length of time staking (the earlier, the better), and (ii) the number of tokens staked (the less well-served areas, the better). In the context of the contingent Dynamic Proof of Location concept (described further in the Product Whitepaper), these indicators are the weighted references that determine the spatial mining rewards. 3. Contribute to Potential Secure Location Services as Zone Anchor or Verifier The FOAM protocol may allow users to provide work and secure localization services and location verification for smart contracts and be rewarded for their own efforts with new FOAM Tokens in the form of mining rewards. Devices and real world contracts can be programmed to designate attestations and track interactions and transactions on the map. With the addition of necessary radio hardware by individual users and the grass roots expansion of the FOAM network, it may be possible for location status to be proved in a different manner. Location could be proved through a time synchronization protocol that would ensure continuity of a distributed clock, whereby specialized hardware could synchronize nodes’ clocks over radio to provide location services in a given area. As explained further in the following paragraph, this ‘Dynamic Proof of Location’ is contingent on a number of factors outside of Foamspace’s control.