VITE - A Next Generation High-performance Decentralized Application Platform DAG Ledger Transactions in Vite are grouped by accounts. That is, each transaction only changes the state of one single account. Send transactions are separated from receive transactions, thereby obviating the need to wait for a transfer to be complete before the initiation of another transaction. The hierarchical design of the consensus algorithm allows horizontal scalability in consensus groups. Asynchronous Architecture Vite splits transactions into transaction pairs according to a 'request-response' pattern. The writing and verification of transactions are asynchronously decoupled, thereby supporting ultra-high throughput. Inter-contract communications are based on an asynchronous messaging model. Reactive Contract Message-Driven With an event-driven architecture, every smart contract is viewed as an independent service. Contracts communicate via messages without sharing state. Solidity++ Solidity++’s syntax is compatible with most of that of Solidity. The new syntax supports asynchronous semantics, contract scheduling, and provides a series of standard libraries, such as string manipulation, floating-point operations, basic mathematical operations, containers, sorting, and so on. Integrated Decentralized Ecosystem End-to-end system for value transfer Vite itself is a decentralized exchange that supports digital asset issuance, cross-chain value transmission, and inter-token transactions based on the Loopring protocol. A quota-based resource allocation mechanism allows light users to pay zero fees and gas. Users can obtain computing resources in multiple ways. Vite also supports quota leasing. dApp Mini Programs The Vite client features an engine for creating HTML5-based decentralized mini programs. This engine simplifies the process of dApp development and deployment.
ProximaX is an advanced extension of the Blockchain and Distributed Ledger Technology (DLT) with utility-rich services and protocols. Businesses, enterprises, and innovators can avoid costly and failure prone centralized architecture by utilizing an all-in-one sustainable platform which provides augmented secured services, content delivery, storage, and media streaming. The ProximaX protocol aims to offer DApp developers cost-efficient fault tolerant, multilayer, P2P cloud services including, but not limited to, blockchain-powered P2P storage and bandwidth. A fault-tolerant system is designed to ensure a system remains fully functional even when part of it is ‘down’ or unavailable. ProximaX will build a P2P cloud storage architecture with fault tolerance and a distributed database by removing the central entity and connecting all the servers (or nodes) in a mesh configuration. Failure of any single component of the mesh will have minimal effect upon the overall performance of the system. ProximaX protocol will ensure confidentiality and integrity of the data passing through a myriad of nodes. The use of distributed databases (DHT) ensures consistency and integrity throughout the network. ProximaX distributed file management system (DFMS) interfaces with NEM blockchain and works in four scenarios: 1. ProximaX Public DFMS with NEM Public chain 2. ProximaX Private DFMS with NEM Public Chain 3. ProximaX Public DFMS with NEM Private Chain 4. ProximaX Private DFMS with NEM Private Chain ProximaX will provide DApp developers with an easy-to-use SDK that abstracts the ProximaX protocol layer into a dynamic second layer on top of the NEM blockchain layer that can carry different unique DApp protocols. This will ensure that the DApp developers can build great P2P applications with the best possible security protocols without relying on points of central authority. It will empower developers to build apps and monetise in the ways they want without any unnecessary compliance pressure. This solution makes use of the NEM blockchain for value and hash transaction and the NEM cryptography framework to gain access to the ProximaX DFMS and work in a tightly integrated environment based on the above four scenarios.