NEM is a highly versatile crypto solution which seeks to adhere to a host of mainstream industry requirements. It is written in Java and JavaScript with 100% original source code. NEM has a stated goal of a wide distribution model and has introduced new features in blockchain technology in its proof-of-importance (POI) algorithm. NEM also features an integrated P2P secure and encrypted messaging system, multisignature accounts and an Eigentrust++ reputation system. Essentially, NEM is designed as a financial blockchain solution and can be used for payment, clearing and settlement in a private environment which is highly controlled. This means that NEM meets several of the regulatory requirements and guidelines in the financial industry. This allows it to be used to settle (change of ownership) any asset via the blockchain. Mijin which is a private chain of NEM has gained popularity and companies such as Hitachi have already embraced it. Why NEM? Many banks around the world have come to accept the importance of blockchain technology. In fact, a good number of banks in the U.S, India and Japan have already started using the technology. Because banks generally employ the smart contract concept, NEM’s platform which is asset-friendly can be used to settle any asset. In settling assets, speed, security, and reliability are very important to a mainstream institution which is what this crypto offers. NEM addresses these issues by repackaging its blockchain into a private chain and presenting it as Mijin. NEM crypto is also applicable in the technology world. Unlike Bitcoin and Dogecoin which use mining to increase the number of coins, XEM uses something called ‘harvesting’. In this process, blocks are generated and a person is rewarded for work contributed using transaction fees. Every block has a certain number of transactions which attract an unknown amount of fees. This keeps the participants incentivized to continue harvesting. For a blockchain user to be allowed to harvest, one must go through a forging mechanism process called Proof-of-Importance (POI). POI is the algorithm used in NEM to time stamp transactions. A NEM user's importance is determined by how many coins they have and the number of transactions made to and from their wallet. POI uses the NCDawareRank network centrality measure, the topology of the transaction graph, as well as a number of other relevant signals to achieve consensus. POI is different from other initiatives which use a fee-sharing model that does not take into consideration one's overall support of the network. In proof-of-stake systems a person needs to have large numbers of coins to form a block, but in NEM transactions volume and trust become factors. This was designed to encourage users of NEM to not simply hold XEM but instead actively carry out transactions. To be eligible for entering the importance calculation, an account must have at least 10,000 vested XEM. All accounts owning more than 10,000 vested XEM have a non-zero importance score. With a supply of 8,999,999,999 XEM, the theoretical maximum number of accounts with non-zero importance is 899,999. In practice, the number of actual accounts with non-zero importance is not expected to approach the theoretical max due to inequalities in held XEM and also the temporal costs associated with vesting. If NEM becomes very popular, a threshold of 10,000 vested XEM could be undesirable. If necessary, this number could be updated in the future via a hard fork, which is the same procedure for adjusting transaction fees and other parameters related to harvesting.
Theta is a decentralized video delivery network, powered by users and an innovative new blockchain. Theta is an open source protocol purpose-built to power the decentralized streaming network and will allow for vertical decentralized apps (DApps) to be built on top of the platform to enable esports, music, TV/movies, education, enterprise conferencing, peer-to-peer streaming, and more. SLIVER.tv’s DApp will be the first application built on the Theta network leveraging its existing user base of millions of esports viewers. DSN and the Theta protocol solve various challenges the video streaming industry faces today. First, Theta tokens are used as an incentive to encourage individual users to share their redundant memory and bandwidth resources as caching nodes for video streams. This improves the quality of stream delivery and solves the “last-mile” delivery problem, the main bottleneck for traditional stream delivery pipelines, especially for high resolution high bitrate 360° virtual reality (VR) streams. Second, with sufficient amount of caching nodes, the majority of viewers will pull streams from peering caching nodes. This significantly reduces content delivery network (CDN) bandwidth costs, which is a major concern for video streaming sites. Lastly, the Theta network greatly improves the streaming market efficiency by streamlining the video delivery process. For example, advertisers can target end viewers at a lower cost and reward influencers more transparently.The Theta blockchain introduces three novel concepts: Reputation Dependent Mining: In the Theta protocol, the caching nodes play the role of miners in the blockchain. The block reward is not a constant, but depends on the reputation score of the caching node that mined the block. To obtain more mining rewards, miners not only spend computation power to mine blocks, but also relay video streams to downstream viewers to increase their reputation scores. Global Reputation Consensus: We propose a mechanism for the Theta network to reach the global consensus on the reputation scores for each caching node. Proof-of-Engagement: We introduce a novel Proof-of-Engagement scheme to prove that viewers legitimately consume the video streams, providing better transparency to advertisers and a basis for viewers to earn Theta tokens for engaging with the content.