ProximaX XPX to Nework NKC Exchange

Instant Exchange XPX to NKC at Best Rate


Choose the most convenient cryptocurrency exchange:

Crypto Pair Details: XPX to NKC

ProximaX XPX

ProximaX is an advanced extension of the Blockchain and Distributed Ledger Technology (DLT) with utility-rich services and protocols. Businesses, enterprises, and innovators can avoid costly and failure prone centralized architecture by utilizing an all-in-one sustainable platform which provides augmented secured services, content delivery, storage, and media streaming. The ProximaX protocol aims to offer DApp developers cost-efficient fault tolerant, multilayer, P2P cloud services including, but not limited to, blockchain-powered P2P storage and bandwidth. A fault-tolerant system is designed to ensure a system remains fully functional even when part of it is ‘down’ or unavailable. ProximaX will build a P2P cloud storage architecture with fault tolerance and a distributed database by removing the central entity and connecting all the servers (or nodes) in a mesh configuration. Failure of any single component of the mesh will have minimal effect upon the overall performance of the system. ProximaX protocol will ensure confidentiality and integrity of the data passing through a myriad of nodes. The use of distributed databases (DHT) ensures consistency and integrity throughout the network. ProximaX distributed file management system (DFMS) interfaces with NEM blockchain and works in four scenarios: 1. ProximaX Public DFMS with NEM Public chain 2. ProximaX Private DFMS with NEM Public Chain 3. ProximaX Public DFMS with NEM Private Chain 4. ProximaX Private DFMS with NEM Private Chain ProximaX will provide DApp developers with an easy-to-use SDK that abstracts the ProximaX protocol layer into a dynamic second layer on top of the NEM blockchain layer that can carry different unique DApp protocols. This will ensure that the DApp developers can build great P2P applications with the best possible security protocols without relying on points of central authority. It will empower developers to build apps and monetise in the ways they want without any unnecessary compliance pressure. This solution makes use of the NEM blockchain for value and hash transaction and the NEM cryptography framework to gain access to the ProximaX DFMS and work in a tightly integrated environment based on the above four scenarios.



Nework NKC

The bitcoin network is a peer-to-peer payment network that operates on a cryptographic protocol. Users send and receive bitcoins, the units of currency, by broadcasting digitally signed messages to the network using bitcoin cryptocurrency wallet software. Transactions are recorded into a distributed, replicated public database known as the blockchain, with consensus achieved by a proof-of-work system called mining. Satoshi Nakamoto, the designer of bitcoin claimed that design and coding of bitcoin began in 2007. The project was released in 2009 as open source software. The network requires the minimal structure to share transactions. An ad hoc decentralized network of volunteers is sufficient. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will. Upon reconnection, a node downloads and verifies new blocks from other nodes to complete its local copy of the blockchain. A bitcoin is defined by a sequence of digitally signed transactions that began with the bitcoin's creation, as a block reward. The owner of a bitcoin transfers it by digitally signing it over to the next owner using a bitcoin transaction, much like endorsing a traditional bank check. A payee can examine each previous transaction to verify the chain of ownership. Unlike traditional check endorsements, bitcoin transactions are irreversible, which eliminates the risk of chargeback fraud. Although it is possible to handle bitcoins individually, it would be unwieldy to require a separate transaction for every bitcoin in a transaction. Transactions are therefore allowed to contain multiple inputs and outputs, allowing bitcoins to be split and combined. Common transactions will have either a single input from a larger previous transaction or multiple inputs combining smaller amounts, and one or two outputs: one for the payment, and one returning the change, if any, to the sender. Any difference between the total input and output amounts of a transaction goes to miners as a transaction fee. In 2013, Mark Gimein estimated electricity consumption to be about 40.9 megawatts (982 megawatt-hours a day). In 2014, Hass McCook estimated 80.7 megawatts (80,666 kW). As of 2015, The Economist estimated that even if all miners used modern facilities, the combined electricity consumption would be 166.7 megawatts (1.46 terawatt-hours per year). To lower the costs, bitcoin miners have set up in places like Iceland where geothermal energy is cheap and cooling Arctic air is free. Chinese bitcoin miners are known to use hydroelectric power in Tibet to reduce electricity costs. Various potential attacks on the bitcoin network and its use as a payment system, real or theoretical, have been considered. The bitcoin protocol includes several features that protect it against some of those attacks, such as unauthorized spending, double spending, forging bitcoins, and tampering with the blockchain. Other attacks, such as theft of private keys, require due care by users.

SOURCE: COINGECKO



instantcryptocurrencyexchange Statistics

Instant Cryptocurrency Exchange Platform

300+

cryptocurrencies

5000+

exchanging cryptocurrency pairs

32+

cryptocurrency exchange platforms

100%

best crypto exchange rates